Source code for TransportMaps.Distributions.TransportMapDistributions

#
# This file is part of TransportMaps.
#
# TransportMaps is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# TransportMaps is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with TransportMaps.  If not, see <http://www.gnu.org/licenses/>.
#
# Transport Maps Library
# Copyright (C) 2015-2018 Massachusetts Institute of Technology
# Uncertainty Quantification group
# Department of Aeronautics and Astronautics
#
# Authors: Transport Map Team
# Website: transportmaps.mit.edu
# Support: transportmaps.mit.edu/qa/
#

import warnings
import numpy as np

from ..Misc import counted, cached, cached_tuple, get_sub_cache
from ..MPI import mpi_map
from ..Maps import \
    CompositeMap,\
    InverseTransportMap
from .TransportMapDistributionBase import TransportMapDistribution

__all__ = [
    'PushForwardTransportMapDistribution',
    'PullBackTransportMapDistribution'
]


[docs]class PushForwardTransportMapDistribution(TransportMapDistribution): r""" Class for densities of the transport map type :math:`T_\sharp \pi` Args: transport_map (Maps.TriangularTransportMap): transport map :math:`T` base_distribution (Distributions.Distribution): distribution :math:`\pi` .. seealso:: :class:`TransportMapDistribution` """ @counted
[docs] def pdf(self, x, params=None, idxs_slice=slice(None), cache=None): r""" Evaluate :math:`T_\sharp \pi({\bf x})` Args: x (:class:`ndarray<numpy.ndarray>` [:math:`m,d`]): evaluation points params (dict): parameters with keys ``params_pi``, ``params_t`` idxs_slice (slice): if precomputed values are present, this parameter indicates at which of the points to evaluate. The number of indices represented by ``idxs_slice`` must match ``x.shape[0]``. cache (dict): cache Returns: (:class:`ndarray<numpy.ndarray>` [:math:`m`]) -- values of :math:`T_\sharp \pi` at the ``x`` points. """ return np.exp( self.log_pdf(x, params, idxs_slice=idxs_slice, cache=cache) )
@cached() @counted
[docs] def log_pdf(self, x, params=None, idxs_slice=slice(None), cache=None): r""" Evaluate :math:`\log T_\sharp \pi({\bf x})` Args: x (:class:`ndarray<numpy.ndarray>` [:math:`m,d`]): evaluation points params (dict): parameters with keys ``params_pi``, ``params_t`` idxs_slice (slice): if precomputed values are present, this parameter indicates at which of the points to evaluate. The number of indices represented by ``idxs_slice`` must match ``x.shape[0]``. cache (dict): cache Returns: (:class:`ndarray<numpy.ndarray>` [:math:`m`]) -- values of :math:`\log T_\sharp\pi` at the ``x`` points. """ try: params_pi = params['params_pi'] except (KeyError,TypeError): params_pi = None try: params_t = params['params_t'] except (KeyError,TypeError): # idxs_slice = slice(None) params_t = None # Compute log-pushforward if x.shape[1] != self.transport_map.dim_in: raise ValueError("dimension mismatch") if params_t is None: params_t = {'components': [{} for i in range(self.transport_map.dim_out)]} xinv = self.transport_map.inverse(x, precomp=params_t, idxs_slice=idxs_slice) params_t['xinv'] = xinv ldgx = self.transport_map.log_det_grad_x_inverse(x, precomp=params_t, idxs_slice=idxs_slice) lpdf = self.base_distribution.log_pdf(xinv, params=params_pi) return TransportMapDistribution._evaluate_log_transport(lpdf, ldgx)
@cached() @counted
[docs] def grad_x_log_pdf( self, x, params=None, idxs_slice=slice(None), cache=None, *args, **kwargs): r""" Evaluate :math:`\nabla_{\bf x} \log \pi({\bf x})` Args: x (:class:`ndarray<numpy.ndarray>` [:math:`m,d`]): evaluation points params (dict): parameters with keys ``params_pi``, ``params_t`` idxs_slice (slice): if precomputed values are present, this parameter indicates at which of the points to evaluate. The number of indices represented by ``idxs_slice`` must match ``x.shape[0]``. Returns: (:class:`ndarray<numpy.ndarray>` [:math:`m,d`]) -- values of :math:`\nabla_x\log\pi` at the ``x`` points. """ try: params_pi = params['params_pi'] except (KeyError,TypeError): params_pi = None try: params_t = params['params_t'] except (KeyError,TypeError): # idxs_slice = slice(None) params_t = None # Compute grad_x_log_pushforward if x.shape[1] != self.transport_map.dim_in: raise ValueError("dimension mismatch") inv = self.transport_map.inverse(x) gxinv = self.transport_map.grad_x_inverse(x) gxldgxinv = self.transport_map.grad_x_log_det_grad_x_inverse(x, params_t) gxlpdfinv = self.base_distribution.grad_x_log_pdf(inv, params_pi) return TransportMapDistribution._evaluate_grad_x_log_transport(gxlpdfinv, gxinv, gxldgxinv)
@cached_tuple(['log_pdf','grad_x_log_pdf']) @counted
[docs] def tuple_grad_x_log_pdf( self, x, params=None, idxs_slice=slice(None), cache=None, *args, **kwargs): r""" Evaluate :math:`\left(\log \pi({\bf x}), \nabla_{\bf x} \log \pi({\bf x})\right)` Args: x (:class:`ndarray<numpy.ndarray>` [:math:`m,d`]): evaluation points params (dict): parameters with keys ``params_pi``, ``params_t`` idxs_slice (slice): if precomputed values are present, this parameter indicates at which of the points to evaluate. The number of indices represented by ``idxs_slice`` must match ``x.shape[0]``. Returns: (:class:`tuple`) -- :math:`\left(\log \pi({\bf x}), \nabla_{\bf x} \log \pi({\bf x})\right)` """ try: params_pi = params['params_pi'] except (KeyError,TypeError): params_pi = None try: params_t = params['params_t'] except (KeyError,TypeError): # idxs_slice = slice(None) params_t = None # Compute tuple_grad_x_log_pushforward if x.shape[1] != self.transport_map.dim_in: raise ValueError("dimension mismatch") inv = self.transport_map.inverse(x) gxinv = self.transport_map.grad_x_inverse(x) ldgxinv = self.transport_map.log_det_grad_x_inverse(x, params_t) gxldgxinv = self.transport_map.grad_x_log_det_grad_x_inverse(x, params_t) lpdfinv, gxlpdfinv = self.base_distribution.tuple_grad_x_log_pdf(inv, params_pi) return ( TransportMapDistribution._evaluate_log_transport(lpdfinv, ldgxinv), TransportMapDistribution._evaluate_grad_x_log_transport(gxlpdfinv, gxinv, gxldgxinv) )
@cached(caching=False) @counted
[docs] def hess_x_log_pdf( self, x, params=None, idxs_slice=slice(None), cache=None, *args, **kwargs): r""" Evaluate :math:`\nabla^2_{\bf x} \log \pi({\bf x})` Args: x (:class:`ndarray<numpy.ndarray>` [:math:`m,d`]): evaluation points params (dict): parameters with keys ``params_pi``, ``params_t`` idxs_slice (slice): if precomputed values are present, this parameter indicates at which of the points to evaluate. The number of indices represented by ``idxs_slice`` must match ``x.shape[0]``. Returns: (:class:`ndarray<numpy.ndarray>` [:math:`m,d,d`]) -- values of :math:`\nabla^2_x\log\pi` at the ``x`` points. """ try: params_pi = params['params_pi'] except (KeyError,TypeError): params_pi = None try: params_t = params['params_t'] except (KeyError,TypeError): # idxs_slice = slice(None) params_t = None # Compute hess_x_log_pushforward if x.shape[1] != self.transport_map.dim_in: raise ValueError("dimension mismatch") n = x.shape[0] inv = self.transport_map.inverse(x) dxT = self.transport_map.grad_x_inverse(x) # n x d x d dx2logpi = self.base_distribution.hess_x_log_pdf( inv, params_pi ) # n x d x d A = np.einsum('...ij,...ik->...jk', dx2logpi, dxT) # n x d x d A = np.einsum('...ij,...ik->...jk', A, dxT) # n x d x d dxlogpi = self.base_distribution.grad_x_log_pdf(inv, params_pi) # n x d dx2T = self.transport_map.hess_x_inverse(x) # n x d x d x d B = np.einsum('...i,...ijk->...jk', dxlogpi, dx2T) C = self.transport_map.hess_x_log_det_grad_x_inverse(x) return A + B + C
@cached(caching=False) @counted
[docs] def action_hess_x_log_pdf( self, x, dx, params=None, idxs_slice=slice(None,None,None), cache=None, *args, **kwargs): r""" Evaluate :math:`\langle \nabla^2_{\bf x} \log \pi({\bf x}), \delta{\bf x}\rangle` Args: x (:class:`ndarray<numpy.ndarray>` [:math:`m,d`]): evaluation points dx (:class:`ndarray<numpy.ndarray>` [:math:`m,d`]): direction on which to evaluate the Hessian params (dict): parameters idxs_slice (slice): if precomputed values are present, this parameter indicates at which of the points to evaluate. The number of indices represented by ``idxs_slice`` must match ``x.shape[0]``. Returns: (:class:`ndarray<numpy.ndarray>` [:math:`m,d`]) -- values of :math:`\langle \nabla^2_{\bf x} \log \pi({\bf x}), \delta{\bf x}\rangle`. """ try: params_pi = params['params_pi'] except (KeyError,TypeError): params_pi = None try: params_t = params['params_t'] except (KeyError,TypeError): # idxs_slice = slice(None) params_t = None # Compute action_hess_x_log_pushforward if x.shape[1] != self.transport_map.dim_in: raise ValueError("dimension mismatch") # n = x.shape[0] inv = self.transport_map.inverse(x) dxT = self.transport_map.grad_x_inverse(x) # n x d x d A = np.einsum('...ij,...j->...i', dxT, dx) # n x d A = self.base_distribution.action_hess_x_log_pdf(inv, A, params_pi) # n x d A = np.einsum('...ij,...i->...j', dxT, A) dxlogpi = self.base_distribution.grad_x_log_pdf(inv, params_pi) # n x d B = self.transport_map.action_hess_x_inverse(x, dx) # n x d x d B = np.einsum('...i,...ij->...j', dxlogpi, B) C = self.transport_map.action_hess_x_log_det_grad_x_inverse(x, dx) return A + B + C
[docs] def map_function_base_to_target(self, f): r""" Given the map :math:`f` returns :math:`f\circ T` Args: f (:class:`TransportMaps.Maps.Map<Map>`): the map :math:`f` Returns: (:class:`TransportMaps.Maps.CompositeMap<CompositeMap>`) -- :math:`f \circ T` """ return CompositeMap(f, self.transport_map)
[docs] def map_samples_base_to_target(self, x, mpi_pool=None): r""" Map input samples (assumed to be from :math:`\pi`) to the corresponding samples from :math:`T_\sharp \pi`. Args: x (:class:`ndarray<numpy.ndarray>` [:math:`m,d`]): input samples mpi_pool (:class:`mpi_map.MPI_Pool<mpi_map.MPI_Pool>`): pool of processes Returns: (:class:`ndarray<numpy.ndarray>` [:math:`m,d`]) -- corresponding samples """ scatter_tuple = (['x'], [x]) out = mpi_map("evaluate", scatter_tuple=scatter_tuple, obj=self.transport_map, mpi_pool=mpi_pool) return out
[docs] def map_samples_target_to_base(self, x, mpi_pool=None): r""" Map input samples assumed to be from :math:`T_\sharp \pi` to the corresponding samples from :math:`\pi`. Args: x (:class:`ndarray<numpy.ndarray>` [:math:`m,d`]): input samples mpi_pool (:class:`mpi_map.MPI_Pool<mpi_map.MPI_Pool>`): pool of processes Returns: (:class:`ndarray<numpy.ndarray>` [:math:`m,d`]) -- corresponding samples """ scatter_tuple = (['x'], [x]) out = mpi_map("inverse", scatter_tuple=scatter_tuple, obj=self.transport_map, mpi_pool=mpi_pool) return out
[docs]class PullBackTransportMapDistribution(TransportMapDistribution): r""" Class for densities of the transport map type :math:`T^\sharp \pi` Args: transport_map (Maps.TriangularTransportMap): transport map :math:`T` base_distribution (Distributions.Distribution): distribution :math:`\pi` .. seealso:: :class:`TransportMapDistribution` """ @counted
[docs] def pdf(self, x, params=None, idxs_slice=slice(None), cache=None): r""" Evaluate :math:`T^\sharp \pi({\bf x})` Args: x (:class:`ndarray<numpy.ndarray>` [:math:`m,d`]): evaluation points params (dict): parameters with keys ``params_pi``, ``params_t`` idxs_slice (slice): if precomputed values are present, this parameter indicates at which of the points to evaluate. The number of indices represented by ``idxs_slice`` must match ``x.shape[0]``. cache (dict): cache Returns: (:class:`ndarray<numpy.ndarray>` [:math:`m`]) -- values of :math:`T^\sharp \pi` at the ``x`` points. """ return np.exp( self.log_pdf(x, params, idxs_slice=idxs_slice, cache=cache))
@cached([('pi',None),('t',None)]) @counted
[docs] def log_pdf(self, x, params=None, idxs_slice=slice(None), cache=None): r""" Evaluate :math:`\log T^\sharp \pi({\bf x})` Args: x (:class:`ndarray<numpy.ndarray>` [:math:`m,d`]): evaluation points params (dict): parameters with keys ``params_pi``, ``params_t`` idxs_slice (slice): if precomputed values are present, this parameter indicates at which of the points to evaluate. The number of indices represented by ``idxs_slice`` must match ``x.shape[0]``. cache (dict): cache Returns: (:class:`ndarray<numpy.ndarray>` [:math:`m`]) -- values of :math:`\log T^\sharp \pi` at the ``x`` points. """ try: params_pi = params['params_pi'] except (KeyError,TypeError): params_pi = None try: params_t = params['params_t'] except (KeyError,TypeError): # idxs_slice = slice(None) params_t = None # Compute log-pullback if x.shape[1] != self.transport_map.dim_in: raise ValueError("dimension mismatch") # Init sub-cache if necessary pi_cache, t_cache = get_sub_cache(cache, ('pi',None), ('t',None)) ev = self.transport_map.evaluate(x, precomp=params_t, idxs_slice=idxs_slice, cache=t_cache) ldgx = self.transport_map.log_det_grad_x( x, precomp=params_t, idxs_slice=idxs_slice, cache=t_cache) lpdf = self.base_distribution.log_pdf(ev, params=params_pi, idxs_slice=idxs_slice, cache=pi_cache) return TransportMapDistribution._evaluate_log_transport(lpdf, ldgx)
@cached([('pi',None),('t',None)]) @counted
[docs] def grad_x_log_pdf( self, x, params=None, idxs_slice=slice(None), cache=None, *args, **kwargs): r""" Evaluate :math:`\nabla_{\bf x} \log T^\sharp \pi({\bf x})` Args: x (:class:`ndarray<numpy.ndarray>` [:math:`m,d`]): evaluation points params (dict): parameters with keys ``params_pi``, ``params_t`` idxs_slice (slice): if precomputed values are present, this parameter indicates at which of the points to evaluate. The number of indices represented by ``idxs_slice`` must match ``x.shape[0]``. Returns: (:class:`ndarray<numpy.ndarray>` [:math:`m`]) -- values of :math:`\nabla_{\bf x} \log T^\sharp \pi` at the ``x`` points. """ try: params_pi = params['params_pi'] except (KeyError,TypeError): params_pi = None try: params_t = params['params_t'] except (KeyError,TypeError): # idxs_slice = slice(None) params_t = None # Compute grad_x_log_pullback if x.shape[1] != self.transport_map.dim_in: raise ValueError("dimension mismatch") pi_cache, t_cache = get_sub_cache(cache, ('pi',None), ('t',None)) ev = self.transport_map.evaluate(x, precomp=params_t, idxs_slice=idxs_slice, cache=t_cache) # Try to evaluate left to right (to save memory) gxlpdf = self.base_distribution.grad_x_log_pdf( ev, params=params_pi, idxs_slice=idxs_slice, cache=pi_cache) gxldgx = self.transport_map.grad_x_log_det_grad_x( x, precomp=params_t, idxs_slice=idxs_slice, cache=t_cache) try: gx = self.transport_map.action_adjoint_grad_x( x, gxlpdf, precomp=params_t, idxs_slice=idxs_slice, cache=t_cache) except NotImplementedError: gx = self.transport_map.grad_x(x, precomp=params_t, idxs_slice=idxs_slice, cache=t_cache) gx = TransportMapDistribution._evaluate_grad_x_log_transport(gxlpdf, gx, gxldgx) else: gx += gxldgx return gx
@cached_tuple(['log_pullback', 'grad_x_log_pullback'], [('pi',None),('t',None)]) @counted
[docs] def tuple_grad_x_log_pdf( self, x, params=None, idxs_slice=slice(None), cache=None, *args, **kwargs): r""" Evaluate :math:`\left(\log T^\sharp \pi({\bf x}), \nabla_{\bf x} \log T^\sharp \pi({\bf x})\right)` Args: x (:class:`ndarray<numpy.ndarray>` [:math:`m,d`]): evaluation points params (dict): parameters with keys ``params_pi``, ``params_t`` idxs_slice (slice): if precomputed values are present, this parameter indicates at which of the points to evaluate. The number of indices represented by ``idxs_slice`` must match ``x.shape[0]``. Returns: (:class:`tuple`) -- :math:`\left(\log T^\sharp \pi({\bf x}), \nabla_{\bf x} \log T^\sharp \pi({\bf x})\right)` """ try: params_pi = params['params_pi'] except (KeyError,TypeError): params_pi = None try: params_t = params['params_t'] except (KeyError,TypeError): # idxs_slice = slice(None) params_t = None # Compute tuple_grad_x_log_pullback if x.shape[1] != self.transport_map.dim_in: raise ValueError("dimension mismatch") pi_cache, t_cache = get_sub_cache(cache, ('pi',None), ('t',None)) ev = self.transport_map.evaluate(x, precomp=params_t, idxs_slice=idxs_slice, cache=t_cache) ldgx = self.transport_map.log_det_grad_x( x, precomp=params_t, idxs_slice=idxs_slice, cache=t_cache) gx = self.transport_map.grad_x(x, precomp=params_t, idxs_slice=idxs_slice, cache=t_cache) gxldgx = self.transport_map.grad_x_log_det_grad_x( x, precomp=params_t, idxs_slice=idxs_slice, cache=t_cache) lpdf, gxlpdf = self.base_distribution.tuple_grad_x_log_pdf( ev, params=params_pi, idxs_slice=idxs_slice, cache=pi_cache) return ( TransportMapDistribution._evaluate_log_transport(lpdf, ldgx), TransportMapDistribution._evaluate_grad_x_log_transport(gxlpdf, gx, gxldgx) )
@cached([('pi',None),('t',None)], caching=False) @counted
[docs] def hess_x_log_pdf( self, x, params=None, idxs_slice=slice(None), cache=None, *args, **kwargs): r""" Evaluate :math:`\nabla^2_{\bf x} \log T^\sharp \pi({\bf x})` Args: x (:class:`ndarray<numpy.ndarray>` [:math:`m,d,d`]): evaluation points params (dict): parameters with keys ``params_pi``, ``params_t`` idxs_slice (slice): if precomputed values are present, this parameter indicates at which of the points to evaluate. The number of indices represented by ``idxs_slice`` must match ``x.shape[0]``. Returns: (:class:`ndarray<numpy.ndarray>` [:math:`m,d,d`]) -- values of :math:`\nabla^2_{\bf x} \log T^\sharp \pi` at the ``x`` points. """ try: params_pi = params['params_pi'] except (KeyError,TypeError): params_pi = None try: params_t = params['params_t'] except (KeyError,TypeError): # idxs_slice = slice(None) params_t = None # Compute hess_x_log_pullback if x.shape[1] != self.transport_map.dim_in: raise ValueError("dimension mismatch") pi_cache, t_cache = get_sub_cache(cache, ('pi',None), ('t',None)) n = x.shape[0] xval = self.transport_map.evaluate(x, precomp=params_t, idxs_slice=idxs_slice, cache=t_cache) dxT = self.transport_map.grad_x(x, precomp=params_t, idxs_slice=idxs_slice, cache=t_cache) dx2logpi = self.base_distribution.hess_x_log_pdf( xval, params=params_pi, idxs_slice=idxs_slice, cache=pi_cache) # n x d x d A = np.einsum('...ij,...ik->...jk', dx2logpi, dxT) # n x d x d A = np.einsum('...ij,...ik->...jk', A, dxT) # n x d x d dxlogpi = self.base_distribution.grad_x_log_pdf( xval, params=params_pi, idxs_slice=idxs_slice, cache=pi_cache) # n x d dx2T = self.transport_map.hess_x( x, precomp=params_t, idxs_slice=idxs_slice, cache=t_cache) # n x d x d x d B = np.einsum('...i,...ijk->...jk', dxlogpi, dx2T) C = self.transport_map.hess_x_log_det_grad_x( x, precomp=params_t, idxs_slice=idxs_slice, cache=t_cache) return A + B + C
@cached([('pi',None),('t',None)], caching=False) @counted
[docs] def action_hess_x_log_pdf(self, x, dx, params=None, idxs_slice=slice(None), cache=None, *args, **kwargs): r""" Evaluate :math:`\langle\nabla^2_{\bf x} \log T^\sharp \pi({\bf x}),\delta{\bf x}\rangle` Args: x (:class:`ndarray<numpy.ndarray>` [:math:`m,d`]): evaluation points dx (:class:`ndarray<numpy.ndarray>` [:math:`m,d`]): direction on which to evaluate the Hessian params (dict): parameters with keys ``params_pi``, ``params_t`` idxs_slice (slice): if precomputed values are present, this parameter indicates at which of the points to evaluate. The number of indices represented by ``idxs_slice`` must match ``x.shape[0]``. Returns: (:class:`ndarray<numpy.ndarray>` [:math:`m,d`]) -- values of :math:`\langle\nabla^2_{\bf x} \log T^\sharp \pi({\bf x}),\delta{\bf x}\rangle` at the ``x`` points. """ try: params_pi = params['params_pi'] except (KeyError,TypeError): params_pi = None try: params_t = params['params_t'] except (KeyError,TypeError): # idxs_slice = slice(None) params_t = None # Compute action_hess_x_log_pullback if x.shape[1] != self.transport_map.dim_in: raise ValueError("dimension mismatch") pi_cache, t_cache = get_sub_cache(cache, ('pi', None), ('t', None)) n = x.shape[0] xval = self.transport_map.evaluate(x, precomp=params_t, idxs_slice=idxs_slice, cache=t_cache) dxT = self.transport_map.grad_x( x, precomp=params_t, idxs_slice=idxs_slice, cache=t_cache) # n x d x d A = np.einsum('...ij,...j->...i', dxT, dx) # n x d A = self.base_distribution.action_hess_x_log_pdf( xval, A, params=params_pi, idxs_slice=idxs_slice, cache=pi_cache) # n x d A = np.einsum('...ij,...i->...j', dxT, A) dxlogpi = self.base_distribution.grad_x_log_pdf( xval, params=params_pi, idxs_slice=idxs_slice, cache=pi_cache) # n x d B = self.transport_map.action_hess_x( x, dx, precomp=params_t, idxs_slice=idxs_slice, cache=t_cache) # n x d x d B = np.einsum('...i,...ij->...j', dxlogpi, B) C = self.transport_map.action_hess_x_log_det_grad_x( x, dx, precomp=params_t, idxs_slice=idxs_slice, cache=t_cache) return A + B + C
[docs] def map_function_base_to_target(self, f): r""" Given the map :math:`f` returns :math:`f\circ T^{-1}` Args: f (:class:`TransportMaps.Maps.Map<Map>`): the map :math:`f` Returns: (:class:`TransportMaps.Maps.CompositeMap<CompositeMap>`) -- :math:`f \circ T^{-1}` """ return CompositeMap(f, InverseTransportMap(self.transport_map))
[docs] def map_samples_base_to_target(self, x, mpi_pool=None): r""" Map input samples (assumed to be from :math:`\pi`) to the corresponding samples from :math:`T^\sharp \pi`. Args: x (:class:`ndarray<numpy.ndarray>` [:math:`m,d`]): input samples mpi_pool (:class:`mpi_map.MPI_Pool<mpi_map.MPI_Pool>`): pool of processes Returns: (:class:`ndarray<numpy.ndarray>` [:math:`m,d`]) -- corresponding samples """ scatter_tuple = (['x'], [x]) out = mpi_map("inverse", scatter_tuple=scatter_tuple, obj=self.transport_map, mpi_pool=mpi_pool) return out
[docs] def map_samples_target_to_base(self, x, mpi_pool=None): r""" Map input samples assumed to be from :math:`T^\sharp \pi` to the corresponding samples from :math:`\pi`. Args: x (:class:`ndarray<numpy.ndarray>` [:math:`m,d`]): input samples mpi_pool (:class:`mpi_map.MPI_Pool<mpi_map.MPI_Pool>`): pool of processes Returns: (:class:`ndarray<numpy.ndarray>` [:math:`m,d`]) -- corresponding samples """ scatter_tuple = (['x'], [x]) out = mpi_map("evaluate", scatter_tuple=scatter_tuple, obj=self.transport_map, mpi_pool=mpi_pool) return out