Source code for TransportMaps.Distributions.Examples.InertialNavigationSystem.INSDistributions

#
# This file is part of TransportMaps.
#
# TransportMaps is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# TransportMaps is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with TransportMaps.  If not, see <http://www.gnu.org/licenses/>.
#
# Transport Maps Library
# Copyright (C) 2015-2018 Massachusetts Institute of Technology
# Uncertainty Quantification group
# Department of Aeronautics and Astronautics
#
# Authors: Transport Map Team
# Website: transportmaps.mit.edu
# Support: transportmaps.mit.edu/qa/
#

import numpy as np
import scipy.linalg as scila
import scipy.integrate as sciint

from TransportMaps.Distributions.FrozenDistributions import \
    NormalDistribution, GaussianDistribution
from TransportMaps.Distributions.Decomposable.LinearGaussianSequentialInferenceDistributions import \
    LinearNormalAR1TransitionDistribution
from TransportMaps.Likelihoods.LikelihoodBase import \
    AdditiveLinearNormalLogLikelihood

__all__ = ['Prior', 'Transition', 'LogLikelihood', 'generate_data']

re = 6367253.
Omega = 0.2625161
dt = 0.5

[docs]class Prior(NormalDistribution): def __init__(self): sig2_eps = (0.02 * np.pi / 180)**2 Q0 = np.zeros((6,6)) Q0[0,0] = Q0[1,1] = (1000./re)**2 Q0[2,2] = (0.1 * np.pi/180)**2 Q0[3,3] = Q0[4,4] = Q0[5,5] = sig2_eps # Init super(Prior,self).__init__(np.zeros(6), Q0)
[docs]class Transition(LinearNormalAR1TransitionDistribution): def __init__(self): theta = np.pi / 4 Ox = Omega * np.cos(theta) Oz = Omega * np.sin(theta) F = np.zeros((6,6)) F[0,1] = Oz; F[1,0] = -Oz; F[1,2] = Ox; F[2,1] = -Ox; F[0,3] = F[1,4] = F[2,5] = 1. G = np.zeros((6,6)) G[3,3] = G[4,4] = G[5,5] = 1. sig2_eps = (0.02 * np.pi / 180)**2 W = np.eye(6) * sig2_eps # Integrate dynamics to obtain finite-difference equations Phi = scila.expm(F*dt) GWG = np.dot(G, np.dot(W,G)) def f(q,t,F,GWG): Q = q.reshape((6,6)) rhs = np.dot(F,Q) + np.dot(Q,F.T) + GWG return rhs.flatten() q0 = np.zeros(6*6) T = [0, dt] sol = sciint.odeint(f, q0, T, args=(F, GWG)) Q = sol[1].reshape((6,6)) # Init super(Transition,self).__init__(np.zeros(6), Phi, np.zeros(6), Q)
[docs]class LogLikelihood(AdditiveLinearNormalLogLikelihood): def __init__(self, y): sig2_xy = (1000./re)**2 sig2_z = (1./60. * np.pi/180)**2 H = np.zeros((3,6)) H[0,0] = H[1,1] = H[2,0] = H[2,2] = 1 R = np.zeros((3,3)) R[0,0] = R[1,1] = sig2_xy R[2,2] = sig2_z super(LogLikelihood,self).__init__(y, np.zeros(3), H, np.zeros(3), R)
[docs]def generate_data(nsteps): prior = Prior() trans = Transition() ll = LogLikelihood(np.zeros(3)) # Just use the constructor to get handle on params # Generate dynamics T = np.zeros(nsteps+1) Z = np.zeros((nsteps+1, 6)) Z[0,:] = prior.rvs(1)[0,:] for i in range(nsteps): T[i+1] = T[i] + dt Z[i+1,:] = trans.T.evaluate(Z[[i],:])[0,:] + trans.pi.rvs(1)[0,:] # Generate observations Y = [] for i in range(nsteps+1): Y.append( ll.T.evaluate(Z[[i],:])[0,:] + ll.pi.rvs(1)[0,:] ) return (T,Z,Y)