TransportMaps.Maps.Functionals.MonotoneFunctionalBase
¶
Module Contents¶
Classes¶
Abstract class for the functional \(f \approx f_{\bf a} = \sum_{{\bf i} \in \mathcal{I}} {\bf a}_{\bf i} \Phi_{\bf i}\) assumed to be monotonic in \(x_d\) |
- class TransportMaps.Maps.Functionals.MonotoneFunctionalBase.MonotoneFunctional(dim)[source]¶
Bases:
TransportMaps.Maps.Functionals.FunctionalBase.Functional
Abstract class for the functional \(f \approx f_{\bf a} = \sum_{{\bf i} \in \mathcal{I}} {\bf a}_{\bf i} \Phi_{\bf i}\) assumed to be monotonic in \(x_d\)
The class defines a series of methods (like the inverse) specific to monotone functions.
- xd_misfit(x, args)[source]¶
Compute \(f_{\bf a}({\bf x}) - y\)
Given the fixed coordinates \({\bf x}_{1:d-1}\), the value \(y\), and the last coordinate \({\bf x}_d\), compute:
\[f_{\bf a}({\bf x}_{1:d-1},{\bf x}_d) - y\]
- partial_xd_misfit(x, args)[source]¶
Compute \(\partial_{x_d} f_{\bf a}({\bf x}) - y = \partial_{x_d} f_{\bf a}({\bf x})\)
Given the fixed coordinates \({\bf x}_{1:d-1}\), the value \(y\), and the last coordinate \({\bf x}_d\), compute:
\[\partial f_{\bf a}({\bf x}_{1:d-1},{\bf x}_d)\]
- inverse(xmd, y, xtol=1e-12, rtol=1e-15)[source]¶
Compute \({\bf x}_d\) s.t. \(f_{\bf a}({\bf x}_{1:d-1},{\bf x}_d) - y = 0\).
Given the fixed coordinates \({\bf x}_{1:d-1}\), the value \(y\), find the last coordinate \({\bf x}_d\) such that:
\[f_{\bf a}({\bf x}_{1:d-1},{\bf x}_d) - y = 0\]We will define this value the inverse of \(f_{\bf a}({\bf x})\) and denote it by \(f_{\bf a}^{-1}({\bf x}_{1:d-1})(y)\).