TransportMaps.Maps.AffineMapBase
¶
Module Contents¶
Classes¶
Affine map \(T[{\bf c},{\bf L}]({\bf x})={\bf c} + {\bf L}{\bf x}\) |
|
Affine map \(T[{\bf c},{\bf L}]({\bf x})={\bf c} + {\bf L}{\bf x}\) |
- class TransportMaps.Maps.AffineMapBase.AffineMap(**kwargs)[source]¶
Bases:
TransportMaps.Maps.ParametricMapBase.ParametricMap
Affine map \(T[{\bf c},{\bf L}]({\bf x})={\bf c} + {\bf L}{\bf x}\)
- property coeffs[source]¶
Returns the constant and linear term of the linear map.
- Returns:
- (
ndarray
) – flattened array of coefficients
- (
- evaluate(x, *args, **kwargs)[source]¶
Evaluate the map at the points \({\bf x} \in \mathbb{R}^{m \times d_{\text{in}}}\).
- Parameters:
x (
ndarray
[\(m,d_{\text{in}}\)]) – evaluation points- Returns:
(
ndarray
[\(m,d_{\text{out}}\)]) – transformed points- Raises:
ValueError – if \(d_{\text{in}}\) does not match the dimension of the transport map.
- grad_x(x, *args, **kwargs)[source]¶
Evaluate the gradient (constant for linear maps)
- Parameters:
x (
ndarray
[\(m,d_{\text{in}}\)]) – evaluation points- Returns:
- (
ndarray
[\(m, d_{\text{out}},d_{\text{in}}\)]) – gradient matrix (constant at every evaluation point).
- (
- Raises:
ValueError – if \(d_{\text{in}}\) does not match the dimension of the transport map.
- tuple_grad_x(x, *args, **kwargs)[source]¶
Evaluate the function and gradient (constant for linear maps)
- Parameters:
x (
ndarray
[\(m,d_{\text{in}}\)]) – evaluation points- Returns:
- (
tuple
) – function and gradient matrices .
- (
- Raises:
ValueError – if \(d_{\text{in}}\) does not match the dimension of the transport map.
- hess_x(x, *args, **kwargs)[source]¶
Evaluate the Hessian for the linear map (zero)
- Parameters:
x (
ndarray
[\(m,d_{\text{in}}\)]) – evaluation points- Returns:
(
ndarray
[\(m,d_{\text{out},d_{\text{in}},d_{\text{in}}\)]) – Hessian matrix (zero everywhere).- Raises:
ValueError – if \(d_{\text{in}}\) does not match the dimension of the transport map.
- action_hess_x(x, dx, *args, **kwargs)[source]¶
Evaluate the action of the Hessian for the linear map (zero)
- Parameters:
- Returns:
- (
ndarray
[\(m,d_{\text{out}},d_{\text{in}}\)]) – action of the Hessian matrix (zero everywhere).
- (
- Raises:
ValueError – if \(d_{\text{in}}\) does not match the dimension of the transport map.
- inverse(y, *args, **kwargs)[source]¶
Compute the pseudoinverse map \(\hat{T}^{-1}({\bf y},{\bf a})\)
- grad_x_inverse(x, *args, **kwargs)[source]¶
Compute \(\nabla_{\bf x} \hat{T}^{-1}({\bf x},{\bf a})\).
- Parameters:
x (
ndarray
[\(m,d\)]) – evaluation points- Returns:
(
ndarray
[\(d,d\)]) – gradient matrix (constant at every evaluation point).- Raises:
ValueError – if \(d\) does not match the dimension of the transport map.
- hess_x_inverse(x, *args, **kwargs)[source]¶
Compute \(\nabla^2_{\bf x} \hat{T}^{-1}({\bf x},{\bf a})\).
- Parameters:
x (
ndarray
[\(m,d\)]) – evaluation points- Returns:
(
ndarray
[\(d,d,d\)]) – Hessian matrix (zero everywhere).- Raises:
ValueError – if \(d\) does not match the dimension of the transport map.
- action_hess_x_inverse(x, dx, *args, **kwargs)[source]¶
Compute \(\langle\nabla^2_{\bf x} \hat{T}^{-1}({\bf x},{\bf a}), \delta{\bf x}\rangle\).
- Parameters:
- Returns:
(
ndarray
[\(d,d\)]) – action of Hessian matrix (zero everywhere).- Raises:
ValueError – if \(d\) does not match the dimension of the transport map.