Source code for TransportMaps.Distributions.Inference.InferenceBase

#
# This file is part of TransportMaps.
#
# TransportMaps is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# TransportMaps is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with TransportMaps.  If not, see <http://www.gnu.org/licenses/>.
#
# Transport Maps Library
# Copyright (C) 2015-2018 Massachusetts Institute of Technology
# Uncertainty Quantification group
# Department of Aeronautics and Astronautics
#
# Authors: Transport Map Team
# Website: transportmaps.mit.edu
# Support: transportmaps.mit.edu/qa/
#

from TransportMaps.Misc import counted, cached, cached_tuple, get_sub_cache
from TransportMaps.Distributions import Distribution

__all__ = ['BayesPosteriorDistribution']

[docs]class BayesPosteriorDistribution(Distribution): r""" Given a log-likelihood and a prior, assemble the posterior density Given the log-likelihood :math:`\log\pi({\bf y}\vert{\bf x})` and the prior density :math:`\pi({\bf x})`, assemble the Bayes' posterior density .. math:: \pi({\bf x}\vert {\bf y}) \propto \pi({\bf y}\vert{\bf x}) \pi({\bf x}) Args: logL (:class:`LogLikelihood<TransportMaps.Likelihoods.LogLikelihood>`): log-likelihood :math:`\log\pi({\bf y}\vert{\bf x})` prior (:class:`Distribution<TransportMaps.Distributions.Distribution>`): prior density :math:`\pi({\bf x})` """ def __init__(self, logL, prior): self.prior = prior self.logL = logL super(BayesPosteriorDistribution, self).__init__(prior.dim)
[docs] def get_ncalls_tree(self, indent=""): out = super(BayesPosteriorDistribution, self).get_ncalls_tree(indent) out += self.prior.get_ncalls_tree(indent + ' ') out += self.logL.get_ncalls_tree(indent + ' ') return out
[docs] def get_nevals_tree(self, indent=""): out = super(BayesPosteriorDistribution, self).get_nevals_tree(indent) out += self.prior.get_nevals_tree(indent + ' ') out += self.logL.get_nevals_tree(indent + ' ') return out
[docs] def get_teval_tree(self, indent=""): out = super(BayesPosteriorDistribution, self).get_teval_tree(indent) out += self.prior.get_teval_tree(indent + ' ') out += self.logL.get_teval_tree(indent + ' ') return out
[docs] def update_ncalls_tree(self, obj): super(BayesPosteriorDistribution, self).update_ncalls_tree(obj) self.prior.update_ncalls_tree(obj.prior) self.logL.update_ncalls_tree(obj.logL)
[docs] def update_nevals_tree(self, obj): super(BayesPosteriorDistribution, self).update_nevals_tree(obj) self.prior.update_nevals_tree(obj.prior) self.logL.update_nevals_tree(obj.logL)
[docs] def update_teval_tree(self, obj): super(BayesPosteriorDistribution, self).update_teval_tree(obj) self.prior.update_teval_tree(obj.prior) self.logL.update_teval_tree(obj.logL)
[docs] def reset_counters(self): super(BayesPosteriorDistribution, self).reset_counters() self.prior.reset_counters() self.logL.reset_counters()
@property
[docs] def observations(self): return self.logL.y
@cached([("logL",None),("prior",None)]) @counted
[docs] def log_pdf(self, x, idxs_slice=slice(None,None,None), cache=None, **kwargs): r""" Evaluate :math:`\log \pi({\bf x}\vert{\bf y})` Args: x (:class:`ndarray<numpy.ndarray>` [:math:`m,d`]): evaluation points idxs_slice (slice): if precomputed values are present, this parameter indicates at which of the points to evaluate. The number of indices represented by ``idxs_slice`` must match ``x.shape[0]``. cache (dict): cache Returns: (:class:`ndarray<numpy.ndarray>` [:math:`m`]) -- values of :math:`\log\pi` at the ``x`` points. """ logL_cache, prior_cache = get_sub_cache(cache, ("logL",None), ("prior",None)) return self.logL.evaluate(x, idxs_slice=idxs_slice, cache=logL_cache)[:,0] \ + self.prior.log_pdf(x, idxs_slice=idxs_slice, cache=prior_cache)
@cached([("logL",None),("prior",None)]) @counted
[docs] def grad_x_log_pdf(self, x, idxs_slice=slice(None,None,None), cache=None, **kwargs): r""" Evaluate :math:`\nabla_{\bf x} \log \pi({\bf x}\vert{\bf y})` Args: x (:class:`ndarray<numpy.ndarray>` [:math:`m,d`]): evaluation points idxs_slice (slice): if precomputed values are present, this parameter indicates at which of the points to evaluate. The number of indices represented by ``idxs_slice`` must match ``x.shape[0]``. cache (dict): cache Returns: (:class:`ndarray<numpy.ndarray>` [:math:`m,d`]) -- values of :math:`\nabla_{\bf x}\log\pi` at the ``x`` points. """ logL_cache, prior_cache = get_sub_cache(cache, ("logL",None), ("prior",None)) return self.logL.grad_x(x, idxs_slice=idxs_slice, cache=logL_cache)[:,0,:] \ + self.prior.grad_x_log_pdf(x, idxs_slice=idxs_slice, cache=prior_cache)
@cached_tuple(['log_pdf','grad_x_log_pdf'],[("logL",None),("prior",None)]) @counted
[docs] def tuple_grad_x_log_pdf(self, x, idxs_slice=slice(None,None,None), cache=None, **kwargs): r""" Evaluate :math:`\left(\log \pi({\bf x}\vert{\bf y}), \nabla_{\bf x} \log \pi({\bf x}\vert{\bf y})\right)` Args: x (:class:`ndarray<numpy.ndarray>` [:math:`m,d`]): evaluation points idxs_slice (slice): if precomputed values are present, this parameter indicates at which of the points to evaluate. The number of indices represented by ``idxs_slice`` must match ``x.shape[0]``. cache (dict): cache Returns: (:class:`tuple`) -- :math:`\left(\log \pi({\bf x}\vert{\bf y}), \nabla_{\bf x} \log \pi({\bf x}\vert{\bf y})\right)` """ logL_cache, prior_cache = get_sub_cache(cache, ("logL",None), ("prior",None)) ll, gxll = self.logL.tuple_grad_x(x, idxs_slice=idxs_slice, cache=logL_cache) lpr, gxlpr = self.prior.tuple_grad_x_log_pdf( x, idxs_slice=idxs_slice, cache=prior_cache) ev = ll[:,0] + lpr gx = gxll[:,0,:] + gxlpr return (ev, gx)
@cached([("logL",None),("prior",None)],False) @counted
[docs] def hess_x_log_pdf(self, x, idxs_slice=slice(None,None,None), cache=None, **kwargs): r""" Evaluate :math:`\nabla^2_{\bf x} \log \pi({\bf x}\vert{\bf y})` Args: x (:class:`ndarray<numpy.ndarray>` [:math:`m,d`]): evaluation points idxs_slice (slice): if precomputed values are present, this parameter indicates at which of the points to evaluate. The number of indices represented by ``idxs_slice`` must match ``x.shape[0]``. cache (dict): cache Returns: (:class:`ndarray<numpy.ndarray>` [:math:`m,d,d`]) -- values of :math:`\nabla^2_{\bf x}\log\pi` at the ``x`` points. """ logL_cache, prior_cache = get_sub_cache(cache, ("logL",None), ("prior",None)) return self.logL.hess_x(x, idxs_slice=idxs_slice, cache=logL_cache)[:,0,:,:] \ + self.prior.hess_x_log_pdf(x, idxs_slice=idxs_slice, cache=prior_cache)
@cached([("logL",None),("prior",None)],False) @counted
[docs] def action_hess_x_log_pdf(self, x, dx, idxs_slice=slice(None,None,None), cache=None, **kwargs): r""" Evaluate :math:`\langle\nabla^2_{\bf x} \log \pi({\bf x}\vert{\bf y}), \delta{\bf x}\rangle` Args: x (:class:`ndarray<numpy.ndarray>` [:math:`m,d`]): evaluation points dx (:class:`ndarray<numpy.ndarray>` [:math:`m,d`]): direction on which to evaluate the Hessian idxs_slice (slice): if precomputed values are present, this parameter indicates at which of the points to evaluate. The number of indices represented by ``idxs_slice`` must match ``x.shape[0]``. cache (dict): cache Returns: (:class:`ndarray<numpy.ndarray>` [:math:`m,d`]) -- values of :math:`\langle\nabla^2_{\bf x} \log \pi({\bf x}\vert{\bf y}), \delta{\bf x}\rangle` at the ``x`` points. """ logL_cache, prior_cache = get_sub_cache(cache, ("logL",None), ("prior",None)) return self.logL.action_hess_x( x, dx, idxs_slice=idxs_slice, cache=logL_cache)[:,0,:] \ + self.prior.action_hess_x_log_pdf( x, dx, idxs_slice=idxs_slice, cache=prior_cache)